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I. INTRODUCTION

The hydrogen-nitrous oxide flame is of modeling interest as one of the
simplest flames which contains nitrogen chemistry; it is also relevant to our
area of interest since nitrous oxide is a common propellant oxidizer.
Previously, two experimental atudi Is of species and temperature profiles have
been reported. Balakhine, et al., studied a low pressure (0.05 atm.:1 lean
H 2/N20 flame with a mass spectrometric technique. Cattolica, et al., studied

* an atmospheric pressure stoichiometric flame with laser absorption and
fluorescence techniques. We report here, an experimental study of atmospheric
pressure H2/N20 flames where the equivalence ratio was varied from 0.44 to

* 1.0. Spontaneous Raman spectroscopy was the primary technique. In addition,
laser induced fluorescence was used to obtain relative concentration profiles
for OH.

II. EXPERIMENTAL

The apparatus used here has been described in detail previously.3  A
q nominal 3W Kr+ laser operating on the 350.742 nm prism selected UV line is

used as the excitation source. The laser cavity is extended with curved
mirrors providing an intracavity focus where the burner is placed for study.
Scattered light from this focused region is imaged on to a 100 Umn entrance
slit of a 0.25 m monochromator, dispersed and then detected with an
intensified Reticon array. The sampled volume of the focal region
approximates a cylinder 3 wmm long and 100 um in diameter. To maximize signal
the entrance slit is horizontal; that is, its long axis coincides with the
laser beam (or long axis of the cylinder). The resolution of the system is
about 12 cm-1 full width half maximum, which is sufficient to resolve the
vibrational structure of the diatomic molecules.

A commercial sintered bronze flat flame burner (McKenna Products) was
used for these fl Ime studies. This type of burner is similar to that used by
Cattolica, et al. The 6.0 cm diameter buraer head is surrounded by a 7.5 cm
diameter shroud through which argon was flowed at a rate of 25 I/min. The
reactant gas flow was adjusted to be 15 I/min for all of the equivalence
ratios studied. These flows to the burner head are regulated with pressure
differences across sintered plugs. The burner is cooled by flowing water
through the copper coil imbedded in the sintered plug. Heat extraction is
determined from the temperature difference and flow rate of the cooling water.

The N2 and 0 calibrations for determining absolute concentration are
determined from t~e ambient room air. For the NO calibration, pure No gas is
f loved through the burner head, as well as argon gas through the shroud. This

shroud gas is necessary to minimize formation of NO 2 (which absorbs the laser
energy) at the perimeter where the laser beam enters and exits the NO

6 to a distance of 0.3 mmn from the burner head before the index of refraction
gradient deflects the laser beam into the burner head. This deflection also
influences the calibration factors for the gases. The collected flame signal
has been optimized under these calibration conditions, and since beam position
and imaging is slightly different in the flame, a constant factor is applied
to all the data of a particular run to correct for the difference. This
factor, which typically ranged from 1.2 to 1.3, is determined from a
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comparison of the measured N2 value in the burnt gas region (2-10 mm above the
surface) with the calculated value from the NASA-Levis thermochemical
equilibrium code (NLC) with the code temperature constrained to the measured
value. In this comparison, to be discussed later, one-half of the measured NO
is included in the N2 value.

All of the number density profiles have been corrected for the partial
masking of the collection optics by the edge of the burner at positions
closest to the burner head (0-1.5 mm).

There are several reasons for using the 350.742 m line of a Kr+ laser
rather than the more standard 514.5 or 488.0 nm lines of an Ar+ laser for the
Hz/N 20 flame studies. First, from previous studies we have found that this
line pumps OH and NH and thus relative concentration profiles for these
species can be measured using this 350.742 nm line. Second, in the reaction
zone vicinity, laser induced fluorescence resulting from either the 514.5 or
488.0 nm pump lines can interfere with the Raman signals.

III. RESULTS

It is possible to observe the Raman spectra simultaneously for four
molecules with the experimental detection system. A Raman spectrum indicative
of this feature is shown in Figure 1. The Stokes Q-branch rotational-
vibrational Raman signals for NO, N2, and O are individually analyzed using
an interactive multivariate least squares fitting procedure which
incorporates the necessary molecular and experimentally specific information.
An analysis of the N20 Raman signals has not been done. Temperatures obtained
from fitting the Raman data for the various molecules are in good agreement,
as seen in Table 1. However, since N2 is present in the largest abundance it
is generally used to determine the temperature. Typical temperature fits
result in standard deviations of about 1%. Relative concentrations obtained
from the fitting are converted to absolute values by comparison to standards.
Estimated absolute errors for the temperature measurements are *3% and *10%
for the concentration measurements of N2 , 02, and NO.

Temperature and concentration results determined from Raman signals
produced in an H2/N20 flame are contained in Table 1. Here the burner
position is fixed such that the laser beam remains 3 = above the burner
surface for all the measurements. For each equivalence ratio there is the
adiabatic flame temperature and a comparison of the temperature values
obtained from fitting the N2 , 02, and NO signals. As the stoichiometric
conditions are approached, the concentrations for 02 and NO decrease to the
point where the fitted temperature has a high degree of uncertainty; however,
the temperatures obtained from these different data are generally in good
agreement, and much lower than the adiabatic value. Assuming that 3 -n above
the burner surface is well into the burnt gas region of the flame a comparison
of experimental values with the NLC results can be made. Here, the NLC was
constrained to the experimental value of the TN for each equivalence ratio in
order to account for the substantial heat extration by the burner.

For most adiabatic flames, the final temperature is the highest at or
close to the stoichiometric mixture and falls off with either lean or rich
mixtures. The temperature as a function of equivalence ratio (Table 1) does

6T
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Figure 1. Stokes Q-Branch Raman Spectra of N2, 02, NO, and N20 Occurring
in a Hydrogen-Nitrous Oxide Premixed Flame. Laser excitation

wavelength is 350.742 nm.

not behave in this manner. Heat extracted from the burner head by the cooling
water was measured to vary from 5.0 Kcal/min for the leanest mixture (0.44) to
11.5 Kcal/min for the stoichiometric mixture. An increase in heat extraction
indicates the reaction zone of the flame is moving closer to the burner head
surface. Thus two opposing effects occur: approaching a stoichiometric
mixture increases the flame temperature, but because of the accompanying
increase in flame velocity the reaction zone moves closer to the burner
surface increasing the heat extraction. The net observed result is that there
are similar experimental flame temperatures for all of the equivalence ratios
studied.

By assuming all the heat loss is due 9o conduction to the burner head, a
final flame temperature can be calculated. This has been done for all the
equivalence ratios reported here, and the value is constant within the
accuracy of the measurement, 2350 * 100 K. This temperature is 450 K * 100 K
higher than the experimentally measured values. Ai o-1.0, a comparison of
heat loss results with those of Cattolica, et al., can be made since the
burner and experimental conditions are identical. We both determine that
about 85% of the heat loss can be accounted for by conduction to the burner
head. Cattolica argues that the remaining 15% is due to radiation from the
burner surface. At the leanest mixture we find about one-half of the heat
loss is due to conduction of the burner head. Now the 450 * 100 K cannot be
due entirely to radiation from the burner surface. Here the burner surface
temperature must necessarily be significantly lower since 5.0 rather than 11.5
kcal/min are being extracted. Radiative heat loss from the burnt gases, even

7
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assuming it is all water vapor, is about an order of magnitude smaller than
required. In summary, the heat losses can be accounted for when the gas
mixture is close to stoichiometric, but not for the lean mixtures.

The data for N2 , given in Table 1, show only the excursions of the N2
concentrations about the NLC values. Experimentally determined concentrations
for NO are much larger than those calculated from the NLC and the experimental
values for 0 concentration are generally smaller then those of the NLC. The
reason for this is that the experimental flame has not attained complete
equilibrium. For a better comparison of the experiment with the NLC values,
the NO in excess of the NLC values should be apportioned to the equilibrium
products. Concentrations of N20 at equilibrium are negligible in these
flames, thus decreasing NO must increase N2. The oxygen from NO can be
apportioned to 02 so the experimental values of 02 in Table I are justifiably
low. The exception to this trend is for #=1.0 where the experimental value
for 02 is much larger than the NLC value. Here, however, the 02 concentration
is so sensitive to the equivalence ratio that uncertainty in the flow of
around 2% can by itself produce this difference. Considering the large
difference in the experimental and NLC value for the NO concentration, it is
obvious that a code containing some detailed chemistry is required to describe
this flame system. A direct comparison of experimental results with those of
Cattolica, et al., 2 can be made at f-1.0. The flame temperature (1925 K
versus 1950 K) and the NO concentration (0.96% versus 1.1%) are in excellent
agreement, as expected.

Profile data for H2/N20 flames of equivalence ratios 0.45, 0.70, and 0.89
are displayed on Figures 2, 3, and 4, respectively. In addition to the
profiles for T, N2 , 02, and NO, the OH relative concentration profile has been
obtained from laser induced fluorescence measurements using the same laser
excitation line, 350.742 nm. The (0,1) Q (19) A-X transition of OH is being
pumped and the fluorescence emission of tAe (0,0) band is monitored. The self
absorption effects that occur in this experimental arrangement do not affect
the OH relative concentration profiles significantly since the distance over
which the self absorption occurs is essentially constant both spatially and
with respect to OH density for the various burner positions. With a knowledge
of the temperature, the fluorescence intensity can be easily converted to
relative concentrations through the Boltzmann factor. The only assumption
necessary for the validity of the relative concentration profil is a constant
quench rate. This assumption is discussed in detail elsewhere.

It was thought that a concentration profile for NE might also be obtained
for this flame since we hive previously been able to excite NH in a CH4 /N20
flame operating at 2400K.3  However, no NH fluorescence was observed.
Cattolica, et al., 2 measure a peak NH concentration of 101 molecules/cm 3 in
an H2 /N 20 stoichioietric flame which is also our estimated sensitivity limit
for a 2400K flame. The present H2 /N20 flame temperature is around 500K
cooler. Since a high J transition is being pumped, it is not surprising that
the NH concentration is below our detection limit. Thus our null result is
consistent with the data of Cattolica, et al.

There are some general features that appear in the profile data of
Figures 2, 3, and 4. The temperature profiles are much smoother and scatter
free than are the concentration profiles, i.e., the temperature parameter
which only depends on the spectral shape is substantially more precise than
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the concentration profiles which are signal amplitude sensitive and require a
calibration. This is especially true for the region which includes part of
the reaction zone (0.3 to 2 m). Here there can be scatter in the data caused
by small laser beam deflections. As the laser beam passes from ambient air
into the flame zone, a change in the index of refraction occurs due to the
temperature change. If this index of refraction gradient is perpendicular to
the propagation of the laser beam, no deflection occurs, however, close to the
burner surface the flame edge is curved and deflection does occur. This
deflection can move the image on the entrance slit of the monochromator, thus
reducing the Raman signal. Should the spatial and spectral resolution
requirements be relaxed, i.e., larger entrance slits, the steering effect can
be made negligible. Line of sight measurements also have compromised spatial
resolution because of this effect. At positions closest to the burner surface
the flame temperature is in excess of 1700K showing that the early reaction
zone is not being probed under these conditions. The flame temperature peaks
around 2 mm and the NO, 02, and 2 concentrations take on constant values from
2 to 10 mm. Thus, these profiles show that the position 3 mn from the burner
surface (data of Table 1) is part of the burnt gas region of the flame where,
for the most part, equilibrium conditions exist. The exception is that NO
remains above its thermochemical equilibrium value. At positions greater than
4 mm from the burner surface, the rate of decrease in OH concentration slows
considerably.
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Figure 2. Temperature and Species Concentration Spatial Profiles for

N2, 02, NO, and OH in Hydrogen-Nitrous Oxide Premixed Flames of
Equivalence Ratio of 0.45. The solid lines are drawn in to show

•,general trends and clarify the data points.
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Figure 3. Temperature and Species Concentration Spatial Profiles for
N2 , 09, NO, and OH in Hydrogen-Nitrous Oxide Premixed Flames of

Equiva~lence Ratio of 0.70. The solid lines are drawn in to show

general trends and clarify the data points.

Cattolica, et al., find that at positions greater than 6 mm from the
burner surface, their measured OH concentrations coincided with the
equilibrium values. This information for *ul.0 lends credence to assuming the
OH concentration at a distance of 10 mm from the burner surface is in
equilibrium (our results). Now the relative OH concentration profiles can be

put on an ebsolute scale by Pssigning the 10 mm position the equilibrium value
(calculated for the measured temperature at this position), and then

normalizing the other points. The equilibrium values are 0.15, 0.08, and 0.06

mole percent for *-0.45, 0.70, and 0.89, respectively.

Cattolica, et al., measure a peak OR concentration of 0.26 mole percent

for an H 2 /N20 stoichiometric flame at T=1950K. We have determined a peak OH
concentration of 0.6 mole percent for an H2 /N20 flame where #-0.89 and
T-1925K. From NLC computations at T=1950K, a change of # from 1.0 to 0.89

increases the OH equilibrium concentration by a factor of 2.3. Use of this
correction places our result very close to that of Cattolica, et al.
Balakhine, et al., measure a peak OH concentration of 0.06 mole percent for a

lean H2 /N20 flame where #*0.46, T=1930K and P-0.05 atm. This result is about

a factor of 7 below the NLC equilibrium value. The nLC OH equilibrium
concentrations for a *=0.45 and T=1925K H2 /N20 flame at atmospheric pressure

is 0.24 mole percent, and 0.45 mole percent at p=O.05 atm. Our measured

relative OH concentrations for the 0.45 and 0.89 equivalence ratios are

11



similar (within 20% of each other) and the normalized peak concentration is

0.5 mole percent, close to the 0.89 case. Hence, from our method of
normalization, there is an order of magnitude difference in the present
results and that for the low pressure flame. Although reasons for this
difference are not obvious, possible recombination of OH in the sampling

nozzle of the low pressure mass spectrometric experiment would result in low
OH values.
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Figure 4. Temperature and Species Concentration Spatial Profiles for

N 2 , 02, NO, and OH in Hydrogen-Nitrous Oxide Premixed Flames of

Equivalence Ratio of 0.89. The solid lines are drawn in to show
general trends and clarify the data points.

IV. SUMMARY

Measured NO concentrations are much higher than the equilibrium values

for all the H /N 0 flames of the various stoichiometries studied here. These
results provide turther evidence that detailed chemistry is required to
describe this flame system. Both line of sight and spatially resolved optical

techniques give similar results for the flame temperature and NO
concentration. When comparing the OH concentration of a lean atmospheric
pressure H2 /N20 flame with the same flame operating at low pressure, large

differences are observed. Possible pressure effects or the inherent
differences of the optical technique with that of mass spectrometric sampling
may be responsible.
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